Rhenium-Osmium Geochronology of Sulfide Minerals: An Industry Perspective

R.M. Morelli, SK Energy and Resources

R.A. Creaser, University of Alberta

Proposal:

Re-Os sulfide geochronology can be a valuable tool for mineral exploration programs in Saskatchewan.

Benefits to the Mineral Industry?

- direct, unambiguous age determination on ore/ ore-related sulfide minerals (Re = 'chalcophile')
- delineation of ore-associated geologic events (e.g. host rock, felsic/mafic magmatism, metamorphism, intra-basinal fluid flow, etc.)
- promotes understanding of ore genesis;
 positions ore event within tectonic framework
 - = more efficient exploration targeting

Rationale

- Re (and Os) preferentially partition into sulfides from precipitating fluid/melt
- 187 Re decays to ^{187}Os ($T_{\frac{1}{2}}$ = 41.6 b.y.) from time of crystallization to present
- if Re/Os composition remains undisturbed(*), yields time of mineralization

Re-Os Molybdenite Geochronology

Re-Os 'low-level' sulfide geochronology

- fulfills a need to obtain absolute ages for <u>common</u> minerals with a <u>cogenetic</u> association with ore.
- theoretically sound, extremely difficult in practice (analytical considerations, extremely low Re, Os concentrations).
- · 'isochron' construction usually required
- testing for accuracy and precision required using natural examples with reasonable age constraints and well defined thermal histories

i. Archean gold: Con Deposit, NWT

ii. Homestake, South Dakota

iii. Meguma Deposits, Nova Scotia

-all vein types present at Dufferin, Ovens, other deposits

- <u>all</u> gold ca. 375 Ma (Ar-Ar mica)

The Ovens: < 50,000 oz Au

Dufferin: ~ 97,000 oz Au

'Initial' 1870s/1880s ratios:

'Initial' Os cont'd:

Initial ¹⁸⁷Os/¹⁸⁸Os

Other Studies:

X

Red Lake Au, Ontario Kalgoorlie Au, W. Australia Touquoy Au, Nova Scotia Con Au, NWT

Homestake Au, USA

Meguma Au, Nova Scotia (The Ovens, Dufferin)

Muruntau, Uzbekistan

THO VMS (Trout Lk., Konuto Lk., Harmin, Sherritt Gordon)

Red Dog Zn-Pb Sedex

Conclusions / Current Status

- Re-Os sulfide geochronology can be an extremely valuable exploration tool by revealing (i) timing of ore deposition and (ii) metal sources to deposits, through initial Os ratios
- molybdenite is superior for Re-Os geochronology (but, no initial Os ratios)
 - > pyrite and arsenopyrite are robust Re-Os chronometers (>500°C); chalcopyrite moderately robust (~400°C?)
 - > sphalerite and pyrrhotite are poor choices (< 350°C)
 - > also Re-Os dating of black shales, bitumen, hydrocarbons, diamond sulfide inclusions.....

Thank you!!

Acknowledgements:

- NSERC, Alberta Ingenuity Fund
- U of A Radioisotope Staff
- Hendrick Falck, Scott Cairns, Chris Bell, Dan Kontak, Rick Horne

